UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 975

EMULATION OF GUITAR EFFECTS USING MACHINE
LEARNING

Luka Ivankovi¢

Zagreb, July 2025

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 975

EMULATION OF GUITAR EFFECTS USING MACHINE
LEARNING

Luka Ivankovi¢

Zagreb, July 2025

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 03 March 2025

MASTER THESIS ASSIGNMENT No. 975

Student: Luka Ivankovi¢ (0036524531)

Study: Computing

Profile: Computer Science

Mentor: assoc. prof. Domagoj Vlah, PhD

Title: Emulation of Guitar Effects Using Machine Learning
Description:

In this thesis, it is necessary to investigate machine learning methods to implement a model capable of imitating
guitar pedals and other sound effects. The fundamental idea is to train a model using data in which the input is
the sound of a guitar without effects, while the desired output from the model is the sound of a guitar with an
effect. The model should correctly learn the sound distortion produced by an individual pedal. Firstly, it is
necessary to create a software framework for the easy creation of a new dataset for a particular pedal.
Afterwards, several approaches to solving the problem should be tested. The first approach is to explore how
deep networks (for example, the WaveNet architecture, RNN-based architectures, etc.) perform on this problem
and to identify any potential shortcomings they might have. It is assumed that such deep models will exhibit
certain limitations. The second approach would be to utilize a range of existing pedals (e.g., distortion,
compression, reverb, delay, etc.) that depend on a number of parameters. The idea here is to approximate the
original pedal (the one with which the dataset was created) by adjusting the parameters of these known pedals.
Essentially, it is necessary to solve an optimization problem in the parameter space of all the pedals.
Additionally, a decision must be made on which loss function to use for comparing sound signals. Since
gradient-based methods will not be feasible for the optimization, the focus will be on approaches using genetic
algorithms.

Submission date: 04 July 2025

SVEUCILISTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE | RACUNARSTVA

DIPLOMSKI ZADATAK br. 975

Pristupnik: Luka Ivankovié (0036524531)

Studij: Racunarstvo

Profil: Racunarska znanost

Mentor: izv. prof. dr. sc. Domagoj Vlah

Zadatak: Emulacija gitarskih efekata primjenom strojnog ucenja
Opis zadatka:

Zagreb, 3. ozujka 2025.

U ovom radu potrebno je istraziti metode strojnog ucenja za ostvarenje modela koji bi bio sposoban imitirati
gitarske pedale i druge zvuéne efekte. Temeljna ideja je trenirati model koriste¢i podatke koji su na ulazu zvuk
gitare bez efekata, dok je zeljeni izlaz iz modela zvuk gitare s efektom. Model bi trebao ispravno nauciti
izobliCenje zvuka koje pojedina pedala ostvaruje. Prvo je potrebno napraviti softverski okvir za jednostavno
kreiranje novog skupa podataka za pojedinu pedalu. Nakon toga je potrebno je isprobati vise pristupa u
rieSavanju problema. Prvi pristup je istraziti kako na ovom problemu rade duboke mreze (recimo arhitektura
WaveNet, arhitekture na bazi RNN-ova, itd.) te koje nedostatke one potencijalno imaju. Pretpostavlja se da ée
takvi duboki modeli imati odredene nedostatke. Drugi pristup bi bio uzeti niz postojeéih pedala (npr. distorzija,
kompresija, reverb, delay...) koje ovise 0 nekom broju parametara. ldeja ovog pristupa bi bila originalnu pedalu
(onu s kojom je stvoren skup podataka) aproksimirati podeSavanjem tih parametara poznatih pedala.
Esencijalno treba rijesiti optimizacijski problem u prostoru parametara svih pedala. Treba odlugiti i koju funkciju
gubitka koristiti za usporedivanje zvuénih signala. Za optimizaciju necée biti moguée koristiti gradijente metode
pa ¢éemo se fokusirati na pristupe pomocu geneti¢kih algoritama.

Rok za predaju rada: 4. srpnja 2025.

Thanks to all the giants, I did my best not to slip off the shoulders.

Contents

[I_Introduction| e e e 3
R Datasef] ot e e e e e e 5
2.1 DatasetSourcel 6
R2 EfeCtS . . - o o o e 6
221 Distortion| e 7

222 Reverbl 9

2.2.3 Othereffects 10

[2.2.4 Applying theeffects| 11

2.3 Chunking and Smart Loading|. 12
2.4 TLossFunctionSelectionl 14
4.1 Empirical Findings| 15
B_Black-Boxmodels| o .. 16
[3.1 Fully Connected Networks| 16
[3.2 Recurrent Networks (LSTM) 17
3.3 WaveNet] e e 19
[3.4 Temporal Convolutional Network (TCN)| 21
[3.5 Structured State Space Models (Mamba)| 22
3.6 Transformers| 24

4 Gray-Boxmodels| 0 0 0oL, 25
4.1 Genetic Algorithm-Based Effect Estimation| 25
4.1.1 Overview of Genetic Algorithms| 26

4.1.2 Effect Chain Encoding and Pedalboard Integration|. 26

4.1.3 Fitness Evaluation and Evolutionary Process| 27

414 Resultsand Discussion|

4.2 Gradient-Based Optimization (DASP),
4.2.1 Limitations of Gray-Box Models|

[5 Additional experiments| 0000,
[5.1 Modelingknobs|
[5.2 Modeling LFO-based effects (Phaser, Flanger)|.
5.3 GuitarlessDatasetl

6 Conclusion|. e
......................................
Abstractl e e e e e e e
BazetaKl
A:TheCodelot

1 Introduction

Guitar players have used pedals for a long time for more expressiveness in their songs.
Effect pedals offer multiple ways to alter audio signals and change guitar tone [1]]. Tra-
ditionally, these effects are achieved through analog circuitry or digital signal process-
ing (DSP), but designing them can be complex and time-consuming. Recently, machine
learning has emerged as a promising alternative, offering the potential to emulate the
sound and behavior of various guitar effects with high accuracy and less manual tuning.
This thesis explores the use of machine learning techniques to model and emulate guitar

effects, with the goal of achieving realistic results.

Modeling guitar effects is a technically challenging problem due to the nonlinear,
dynamic, and time-dependent nature of audio transformations. Effects like distortion
exhibit strong nonlinearity, while others like delay and reverb involve memory and tem-

poral structure.

There are three ways to approach modeling guitar effects: black-box, white-box and
gray-box modeling. Black box modeling assume nothing about the internal structure
of guitar effects and focus on learning end-to-end mapping straight from input to out-
put. In contrast, white-box modeling means that every analog component needs to be
meticulously measured and digitally simulated, so that the model not only produces the
sounds of the modeled effect, but also allows adjusting the controls like on the modeled
effect. Gray-box modeling does something in between, it tries to assume some internal
structure of the modeled effect, but still relies on optimization methods to fill out un-
known parameters or relationships that cannot be directly observed or derived from first

principles.

This thesis explores two of the three approaches to modeling guitar effects: black-

box learning and gray-box modeling. For black-box models, we will first try out the basic
fully connected network and start upgrading from there. We will introduce memory via
LSTMs and later tackle more complex architectures like WaveNet, TCN, Structured state
space sequence modeling. These models are highly expressive and flexible but can be
quite data-hungry and memory expensive, that’s why the second part of this thesis will
focus on gray-box optimization, more specifically, we will try out the genetic algorithm

and differentiable digital signal processing and compare them to white-box modeling.

Models will be evaluated on two types of effect pedals: distortion and reverb. We
will evaluate a few different loss functions and answer why training these models on a

dataset without guitar recordings may also work.

2 Dataset

Sound is a mechanical vibration that propagates as an acoustic wave through a medium
such as air. These vibrations can be either heard by our ears which we then perceive
as sound, or captured and represented digitally using audio file formats such as WAV.
A standard sampling rate of 44.1 kHz means the audio signal is sampled 44,100 times
per second. Why exactly 44.1 kHz is used explains Nyquist theorem, which states that to
accurately reconstruct a signal, it must be sampled at least twice the highest frequency
present. Since the upper limit of human hearing is approximately 20 kHz, a sampling
rate just above 40 kHz is sufficient. Each sample represents the amplitude of the sound

wave at a specific point in time.

The figure below illustrates a typical guitar signal chain, where the raw input
from the guitar passes through an effects pedal before reaching the output (such as an

amplifier or audio interface).

Figure 2.1: Typical guitar setup

In this case, all the signals are analog, even the amplifier. The figure below [2.2]il-
lustrates how the same sound would be represented if captured digitally, as WAV files,
before and after the pedal. These waveform transformations are what our models aim

to capture and learn: modeling how the effects pedal alters the raw guitar signal in both

subtle and significant ways.

Input WAV

10000

Amplitud
o

—_—

i

~10000

—20000

Output WAV (Processed)

30000

20000

10000

Amplitude

~10000

—20000

—————

—30000

15
Time [s]

Figure 2.2: Audio waveform before (blue) and after (red) distortion

2.1 Dataset Source

The dataset used for this thesis is the “Musical Instruments Sound Dataset” by Soumen-
dra Prasad, available on KaggleHubﬂ The original dataset contains 700 recordings of
guitar, drums and violin each and 528 recordings of piano with various lengths. The test

set contains a total of 80 audio files, 20 from each class.

Only guitar recordings were used to train the models. Audio files in the dataset are
between 1.44 and 82 seconds long. As shown in Figure the majority of the files are
shorter than 5 seconds. I have converted all mono files to stereo, so every file now has 2

channels. All files use 44.1 kHz sampling rate.

Since the original dataset only contains unprocessed audio files, I have applied effects
on all audio files using Spotify’s library PedalBoard, thus creating pairs of unprocessed
and processed audio files. In the next chapter we will look into details of which exact

effects were chosen and why.

2.2 Effects

Two types of effects were used in this study: distortion and reverb.

« Distortion pedal alters an electric guitar’s sound by adding gain and clipping the

"https://www.kaggle.com/datasets/soumendraprasad/musical-instruments-sound-
dataset

https://www.kaggle.com/datasets/soumendraprasad/musical-instruments-sound-dataset
https://www.kaggle.com/datasets/soumendraprasad/musical-instruments-sound-dataset

Distribution of File Lengths in 'train/x/guitar’

2504 | mem [train_x_guitar

200

150 4

Number of Files

100 4

il | T

u
50 60 70 80

File Length (seconds)

Figure 2.3: Distribution of file lengths

signal, resulting in a heavily overdriven, saturated tone, often described as "dirty” or
"gritty”. It’'s commonly used for rock and metal music to achieve a heavy, sustained

sound.

« Reverb pedal simulates the natural sound reflections that occur in physical spaces,
adding depth and ambience to a sound. It essentially creates the effect of playing
in a room, hall, or other environment by emulating the way sound waves bounce

off surfaces and decay over time.

Impulse Response Time

Impulse response time refers to the duration it takes for a system’s output to settle down
after being subjected to a brief, sudden input (an impulse). It will be useful to measure
the impulse response time for guitar effects, as it correlates with how time-dependent

the pedals are.

2.2.1 Distortion

Memoryless distortion refers to a type of distortion in a system where the output at any
given time depends only on the input at that same time, without any influence from past
input values. This means the system has no memory of past inputs and its behavior is
solely determined by the instantaneous input. This system corresponds to an impulse

response time of 0 samples.

For simple memoryless nonlinear distortions, one can model the transformation us-
ing static nonlinear functions. We can apply a simple hard-clipping distortion to an
audio by multiplying the original signal by a constant g (that we call gain), and then

applying the following nonlinearity:

r

-1 ifg-x(t)<-1
y&) =1g-x(t) if —1<g-x(t)<1 (2.1)
1 ifg-x(t)>1

Simmilarily, we can model a soft-clipping distortion by applying tanh nonlinear

function after the gain:

y(t) = tanh (g - x(¢)) (2.2)

As shown in Figure the waveform becomes visibly altered after applying soft-
clipping with a high gain. The peaks of the waveform are clipped off and compressed
toward the maximum and minimum amplitude limits, resulting in a more square-like

appearance compared to the original signal.

In contrast to memoryless distortion, systems with memory can have output that de-
pends on past input values. For example, a filter with a frequency response that is not flat
(i.e., it affects different frequencies differently) has memory. These systems correspond

to an impulse response longer than one sample.

Analog vs Digital Distortion

Analog distortion circuits rely on physical components like diodes, tubes, and transistors.
These components are temperature-sensitive and may behave differently depending on
humidity, power supply variation, and even the wear of the components. For instance,

germanium transistors are known to sound different at different ambient temperatures.

While such small deviations are difficult to capture precisely, they generally do not

significantly affect the perceptual quality.

Some pedals add non-deterministic elements, such as analog crackling or gray noise,
that cannot be modeled accurately with deterministic ML systems. For example, some
vintage analog fuzz pedals introduce intentional noise artifacts through unstable cir-
cuitry. Modeling such effects is theoretically impossible without modeling a stochastic

source.

Distortion in my Dataset

In this dataset, we applied two different types of audio distortion:

« Simple Distortion:
Thisis a deterministic, memoryless digital distortion implemented using soft-clipping,
available in the Spotify pedalboard library. The transformation uses the soft-clipping
nonlinearity defined in Equation where g is the pre-gain applied to the input
signal x(¢). For this dataset, we set the pre-gain to 25dB. This distortion is static

and has no memory, making it relatively simple to model.

« Raging Demon:
The second distortion type is the Raging Demon, a VST pluginf| that we loaded us-
ing the load_plugin function available in the Spotify pedalboard library. To add
extra harmonic content, we chained this plugin along with the same soft-clipping
distortion from the Spotify pedalboard library used earlier, but with pre-gain set
to 4dB this time. Unlike the soft-clipping distortion, the Raging Demon plugin in-
troduces nonlinear distortion with memory, having an estimated impulse re-
sponse duration of approximately 0.188 seconds. This temporal behavior makes
the modeling task significantly more complex, as the output depends on both the

current and past inputs.

2.2.2 Reverb

Reverb is a time-domain effect that simulates the natural reflections of sound in a phys-
ical space like room or hall. Unlike distortion, reverb is often linear or quasi-linear and

is typically implemented as a convolution of the input signal.

’https://github.com/shayangheidi/theragingdemon/

https://github.com/shayangheidi/theragingdemon/

Reverb is a long-memory effect, and commonly has an impulse response time of more
than a few seconds. Keeping in mind that each second of audio has 44100 samples, that
means the model needs to have a receptive field of 100000 samples at the very least, only

to capture long-term dependencies on 3 seconds of audio.

Analog Reverb

When digital modeling wasn’t a thing, people were creative in using analog equipment
to alter the sound. A good example is when they used actual springs to propagate sound.
That resulted in a reverb-like effect, and it was later called spring reverb pedal and used
among many guitar players. Its behavior is highly nonlinear due to the physical proper-
ties of the spring. To accurately model a spring reverb, a neural network would essen-
tially need to approximate the behavior of a full mechanical physics engine, a task that

is extremely difficult without access to the underlying physical state.

Reverb in My Dataset

In addition to distortion effects, the dataset also includes reverberation applied using VST
plugins loaded with the Spotify pedalboard library. Both reverbs used in my dataset are
from the Dragonfly plugin suite]

« Dragonfly Plate Reverb:
Measured impulse response analysis showed that this effect introduces a reverber-
ation tail lasting 2.844 seconds. This adds a moderate amount of temporal depen-

dencies for the models to learn.

« Dragonfly Room Reverb:
This reverb has a significantly longer tail, with a measured impulse response dura-
tion of 6.738 seconds. This adds an even greater amount of temporal dependen-

cies, simulating a large and reflective room environment.

2.2.3 Other effects

There are also modulation effects like chorus and phaser, they are typically based on

dynamic time-varying parameters (e.g., low-frequency oscillators). Similarly, compres-

*https://michaelwillis.github.io/dragonfly-reverb/

10

https://michaelwillis.github.io/dragonfly-reverb/

sion involves threshold-based dynamic range processing. These effects were chosen to

be excluded from the research.

2.2.4 Applying the effects

After applying distortion and reverb effects to the original clean recordings, the final
dataset contains one processed pair per effect type for each clean file. This results in
four input-output pairs per clean file: one for each of the soft-clipping distortion, Raging

Demon distortion, Plate reverb, and Room reverb effects.

Table summarizes the audio effects used in this study, along with their estimated
impulse response durations, sample lengths, and qualitative memory characteristics.
These values reflect the temporal extent of each effect and were measured using Python
by analyzing the decay envelope of each impulse response.

Table 2.1: Impulse Response Characteristics of Effects in the Dataset

Effect Estimated IR Duration Samples Memory Type
Simple Distortion 0 ms 0 Memoryless
Raging Demon Distortion 0.188 s 8271 Short-Memory
Dragonfly Plate Reverb 2.844 s 125413 Long-Memory
Dragonfly Room Reverb 6.738 s 297165 Very Long-Memory

This table highlights the increasing complexity of modeling each effect. Memoryless
effects such as soft-clipping are purely static and easier to approximate using feedforward
models. In contrast, time-dependent effects like the Raging Demon and long-tail re-
verbs introduce significant temporal dependencies, requiring neural architectures with

extended receptive fields and memory capabilities.

Figure [2.4]visualizes the total audio length per effect category. Effects with non-zero
impulse responses, such as the reverbs and Raging Demon, result in longer output sig-
nals due to the natural decay or tail introduced by their temporal characteristics. Each
processed audio file is extended by an amount equal to the effect’s impulse response dura-
tion. This leads to a dataset that is significantly longer (by tens or hundreds of thousands

of samples) compared to the original clean recordings.

To address the mismatch in length between clean inputs and processed outputs, the

dataloading pipeline automatically pads the shorter signal (usually the input) with zeros.

11

Total Audio Length per Folder

4h 5m 565

14000 +

12000 4 3h 20m 30s

2h 47m 19s

10000 1

8000 1

6000

Total Audio Length (seconds)

4000 +

2000 1

dragonflyPlateReverb dragonflyRoomReverb ragingDemon simpleDist train_x_guitar

Figure 2.4: Distribution of dataset lengths

This ensures that all input-output pairs are temporally aligned and of consistent length
for training. Notably, the purple bar (representing the soft-clipping distortion) appears
nearly identical to the red bar (clean) in the figure, since this memoryless effect does not

alter the length of the signal.

The following chapters will explore the architectural choices and training strategies
used to capture these effects across varying levels of temporal complexity, from static

nonlinearities to long-memory convolutional behavior.

2.3 Chunking and Smart Loading

To avoid bottleneck in loading new audio files from permenant memory to RAM, Iimple-
mented a custom dataset handler class using PyTorch’s Dataset and DataLoader inter-
faces. The core strategy revolves around three key components: audio chunking, smart

file access via a frequency-based cache, and normalization.

Chunking and Batching

Instead of loading all files at once into memory, we read files on-the-fly. A fixed-length
sliding window of size N samples is then extracted from the audio files, acting as the
input to the model. The target of the model is either the corresponding sample at the
end of the chunk (for sample-wise prediction) or another chunk depending on the model

architecture. This windowed approach allows training on longer sequences instead of

12

training on individual samples.

Smart Caching via FrequencyQueue

To avoid reloading and reprocessing the same files repeatedly during training (especially
when using small input windows that span across audio files), a smart caching mecha-
nism is implemented using a custom FrequencyQueue class. This cache keeps track of
the most frequently and recently accessed audio files and stores them in memory, up to

a specified capacity.

Each file access updates both a frequency counter and a timestamp, ensuring that
files which are both frequently and recently accessed are prioritized in memory. When

the cache exceeds its capacity, the least recently/frequently used file is evicted.

The benefits become especially apparent when batch shuffling is enabled: since ran-
dom chunks are sampled from the dataset, larger audio files (containing more samples)
are naturally selected more often. Without an intelligent caching mechanism, this would
result in frequent reloading of large files from disk, introducing significant I/O overhead.
By employing the FrequencyQueue, we avoid redundant disk access by keeping the most
frequently and recently accessed files in memory, greatly improving data loading speed

and overall training throughput.

Normalization

After each file is loaded into memory, it is then normalized to ensure consistent dynamic
range across the dataset. The normalization function scales each audio file so that its
maximum absolute value (across both stereo channels) is within the range [—1, 1]. This
speeds up convergence and stabilizes training. The model will focus more on model-
ing the input-output mappings rather than also trying to predict the scale or loudness
variations between different recordings. Without normalization, amplitude differences
between files could introduce unwanted bias, forcing the model to allocate capacity to

learn trivial gain corrections instead of capturing the actual effect behavior.

To further improve the dataloader speed, normalization should have been done as

part of the data preprocessing, allowing the model to load already-normalized audio files

13

directly from disk, thereby reducing per-sample processing overhead during training.

2.4 Loss Function Selection

In audio effect modeling, the choice of loss function is critical. The suitability of a loss
function depends primarily on the type of effect being emulated, rather than on type of

model used.

MSE vs. MAE vs. ESR

The Mean Squared Error (MSE) is defined as:
N 1 N
MSE(y.¥) = 1 20 = 9%, (2.3)
t

penalizing absolute sample-wise amplitude differences without normalization.

The Mean Absolute Error (MAE), also known as the L, loss, is defined as:
N 1 .
MAE(y.9) = 5 2, [vi = 9/ (2.4)
t

penalizing absolute deviations linearly, making it less sensitive to large outliers than

MSE.

In contrast, the Error-to-Signal Ratio (ESR) loss is defined as:

t(t At)z
ESR(y,y) = Zzyy—eryE (2.5)

where y is the target signal, y the predicted signal, and ¢ is a small constant to avoid

division by zero.

ESR can also be applied after a pre-emphasis filter:
X, =x,—ax,_;, 09<ac<l.o0, (2.6)

to boost high-frequency components and make the loss more sensitive to perceptually

important details such as early reflections in reverberation.

14

Choosing Loss Functions for Different Audio Effects

The choice of loss function should reflect the perceptual and physical properties that
define the audio effect [2] [3]. For distortion-based effects such as overdrive or fuzz,
exact waveform amplitude and phase alignment is crucial, since even small deviations
in amplitude can substantially alter the harmonic content. In these cases, the Mean
Squared Error (MSE) is generally the most appropriate choice, as it penalizes absolute

sample-wise differences without normalization.

For time-based effects like reverb, delay, or chorus, perceptual similarity is more
important than precise waveform matching. These effects often produce dense, phase-
rich outputs where many different waveforms can sound perceptually identical. Here,
a scale-invariant measure such as the Error-to-Signal Ratio (ESR) is better suited, es-
pecially when combined with pre-emphasis filtering to highlight high-frequency details
that carry spatial cues (e.g., early reflections). Alternatively, a spectral-domain loss can
capture similarities in spectral envelope and decay characteristics without requiring ex-

act phase matching.

In the case of equalization (EQ) and other filtering effects, the defining property is
the accuracy of the frequency response. Since these effects are explicitly designed to
shape magnitude spectra, an STFT-magnitude MSE directly optimizes for matching

the target spectral profile while ignoring irrelevant phase differences.

Finally, for pitch-shifting and time-stretching effects, the perceived pitch and tim-
ing must be preserved, even if the waveform shape changes. In such cases, perceptual
spectral losses [4], which compare representations such as mel-spectrograms, can bet-

ter reflect human auditory sensitivity to pitch accuracy and temporal coherence.

2.4.1 Empirical Findings

When modeling a simple audio distortion effect with an LSTM, I empirically found that
using MSE yielded better results than ESR. Because ESR is scale-invariant, it can under-
estimate the penalty for small amplitude mismatches, which are perceptually critical in
distortion. In contrast, for effects such as reverb, ESR is generally expected to be more

appropriate. In the rest of this work we will use both MSE and ESR.

15

3 Black-Box models

3.1 Fully Connected Networks

Fully Connected Networks (FCNs) are among the simplest types of neural architectures.
Each neuron in a given layer is connected to all neurons in the subsequent layer. When
applied to audio modeling, an FCN typically operates on short windows of the input

signal.

FCNs can effectively model simple distortion effects with minimal memory, i.e., with
a very short or negligible impulse response. This is because such effects are primarily

nonlinear amplitude transformations, often describable by a static nonlinear function:

yln] = f(x[n])

where x[n] is the input signal and f(-) is the nonlinear transformation applied by the

effect.

However, FCNs struggle with effects that involve longer memory, such as reverb or
delay. These effects require a longer temporal context, and since FCNs do not inherently

model time dependencies, they fail to capture these interactions.

In my experiments, I used a fully connected network with a single hidden layer of size
72 and ReLU activation function. After training for 5 epochs, it successfully learned to
emulate only the simplest soft-clipping distortion, characterized by an impulse response
length of zero samples. In this case, the network effectively learned the nonlinear trans-

formation of the distortion, which corresponds to a simple tanh function.

Interestingly enough, when the activation function of the FCN is chosen to be sig-

16

moid instead of ReLU, the network can directly model the smooth saturation curve of
the distortion. This is because the hyperbolic tangent can be expressed in terms of the
logistic sigmoid o(z) as:

tanh(gx) =2 - 0(2gx) — 1,

where the gain parameter g is learned through the weights of the network. In this form,
o(2gx) produces a smooth transition between 0 and 1, which is then scaled and shifted

to match the —1 to 1 range of tanh.

Using ReLU activation makes the task significantly more challenging, as ReLU pro-
duces only piecewise-linear mappings. While a ReLU-based FCN can approximate tanh(gx)
to arbitrary precision by increasing the number of hidden neurons or layers, the result
will always be a segmented linear approximation rather than a smooth curve, requiring

more parameters to achieve the same accuracy as smooth activations.

For the reverb task, the model ended up learning only the dry component of the sig-
nal, effectively minimizing the MSE by ignoring the reverberant tail. As a result, it failed

to reproduce the characteristic decay and spatial texture of the reverb effect.

Table|3.1/demonstrates the limitations of FCNs when modeling effects with increas-

ing temporal complexity.

Table 3.1: Performance of FCNs on Effects with Increasing Impulse Response

Effect Type Impulse Response Length MSE Loss Subjective Quality
Simple Distortion None 0.00095 Good
Raging Demon Distortion Short 0.028 Moderate
Dragonfly Plate Reverb Long 0.3537 Poor

3.2 Recurrent Networks (LSTM)

Recurrent Neural Networks (RNNs) [5]] are designed to model sequential data by main-
taining a hidden state that captures past information. Major improvements like the Long
Short-Term Memory (LSTM)3.1|architecture proposed by Hochreiter and Schmidhuber
[6] enabled RNNs to effectively learn longer temporal dependencies by mitigating the

vanishing and exploding gradient problems.

17

J

Figure 3.1: Representation of an LSTM cell

Because of their memory and gating mechanisms, LSTMs have been implemented to
emulate a variety of distortion-type effects and even tube amplifiers [7] [8]. Unlike FCNs,
RNN-based models can, in principle, model effects with theoretically infinite impulse

responses, although in practice they often struggle to do so.

I used similar architecture as [[7] and the Keith Bloemer’s implementation available
at[] Asillustrated in Figure the model first applies two 1D convolutional layers with
16 filters each to capture short-term temporal features from the input audio, followed by
a single LSTM layer with 26 hidden units to model longer temporal dependencies. Input
sequences of length 100 are processed in a sliding-window fashion, and the LSTM output
at the last time step is passed through a fully connected layer to produce the predicted
audio samples. The model was trained to minimize sample-wise MSE, aiming to learn

both the nonlinear characteristics and the short-term temporal structure of the effect.

As shown in Table the LSTM matches the FCN in performance for simple dis-
tortion, but performs significantly better on distortions with short impulse responses,
such as Raging Demon Distortion. However, it still fails to fully capture the effect, since
the impulse response is 8271 samples long, while LSTMs based on NLP tasks have been
shown to handle sequences of roughly 500-1000 tokens. This corresponds to only about
10-100 ms (441-4410 samples) in audio modeling, which is shorter than the impulse

response length.

Thttps://github.com/GuitarML/GuitarLSTM

18

https://github.com/GuitarML/GuitarLSTM

Input
Batch X Sequence x Channels

l

ConvlD
16 filters, Kernel size 12

l

ConvlD
16 filters, Kernel size 12

l

LSTM
26 hidden units

l

Fully Connected
Output

Figure 3.2: Architecture of the LSTM-based guitar effect model.

LSTM share the same problem with FCN in modeling reverb, it struggles to emulate

it effectively and focuses on minimizing MSE by capturing only the dry part of the effect.

Table 3.2: Comparison of LSTM and FCN on Effects with Increasing Impulse Response

Effect Type Model MSE Loss Subjective Quality
Simple Distortion FCN 0.00095 Good
Simple Distortion LSTM 0.00043 Great
Raging Demon Distortion = FCN 0.028 Moderate
Raging Demon Distortion LSTM 0.0013 Good
Dragonfly Plate Reverb FCN 0.3537 Poor
Dragonfly Plate Reverb LSTM 0.0143 Poor

3.3 WaveNet

WaveNet, introduced by van den Oord et al. in 2016 [9], is a generative model for raw
audio based on dilated causal convolutions[3.3] The model stacks layers of convolutions
where the dilation factor increases exponentially, allowing the receptive field to grow

without an explosion in parameters.

WaveNet is well-suited for short-term, nonlinear effects like distortion, where the
output depends heavily on a small window of recent samples. However, reverb is a long-

term effect with a very long impulse response, sometimes lasting several seconds, mean-

19

Ouput @ @ ©® ©® ©® ©® @ ¢

s T eoe
Eeonee T s
oA AN S
T NANANNNN

mt @ © 0O 0000000000 O0CO0OO

Figure 3.3: Wavenet dilated convolutions

ing the current output may depend on audio that occurred thousands or even millions of
samples earlier. Because WaveNet has a finite receptive field (determined by its number

of layers and dilation rates), it cannot capture such long-term dependencies effectively.

My implementation roughly followed the approach of Keith Bloemelﬂ and the archi-
tectures proposed in [7, 8]. Concretely, a PyTorch WaveNet model was configured with
stereo input (as opposed to Keith Bloemer’s implementation that was mono), 32 resid-
ual channels, 64 skip channels, 3 blocks, 4 layers per block and kernel size of 2. Each
block consists of a causal convolution followed by gated activations, with residual and

skip connections aggregated across layers.

During training, sequences were fed in chunks using sliding windows, similar to the

LSTM approach, and the model was optimized using sample-wise MSE loss.

Wavenet performs similarly to LSTMs on audio distortion emulation task as already
shown in [8], and shares some of LSTMs limitations (struggles with effects that have
longer temporal dependencies such as reverb), but also offers some upgrades such as
faster convergence due to parallelization. Although, RNNs are shown to require less
processing power to run [§]]. In Table we can see that Both LSTMs and Wavenet fail
miserably for the longest room reverb effect. They manage to simulate only a very short

part of the reverb tail (that is more than 6 seconds for the longest reverb).

Zhttps://github.com/GuitarML/PedalNetRT

20

https://github.com/GuitarML/PedalNetRT

Table 3.3: Wavenet and LSTM struggling on Effects with very long impulse response

Effect Type Model MSE Loss Subjective Quality
Dragonfly Plate Reverb ~ Wavenet 0.0178 Poor
Dragonfly Plate Reverb LSTM 0.0143 Poor
Dragonfly Room Reverb Wavenet 0.0933 Poor
Dragonfly Room Reverb ~ LSTM 0.0941 Poor

3.4 Temporal Convolutional Network (TCN)

Temporal Convolutional Networks [10] build upon WaveNet’s idea but introduce resid-
ual blocks and normalization. TCNs are causal, use dilated convolutions, and can model
long sequences efficiently. They have the advantage of parallel computation (unlike

RNNs5) and avoid the vanishing gradient issues common in recurrent architectures.

Empirically, TCNs often outperform LSTMs [[11]] in both convergence speed and final
accuracy when modeling effects with long memory, while still retaining fast inference
capabilities. They also outperform WaveNet in this task, because they do not limit re-
ceptive field to a few seconds like WaveNet does. They have been successfully applied to
model both dynamic range effects such as compression [12]] and nonlinear effects such

as overdrive [13]].

Input
Batch x Sequence x Channels

l

TemporalBlock >

32 channels, kernel 3, dilation 1

l

TemporalBlock >

32 channels, kernel 3, dilation 2

l

TemporalBlock
32 channels, kernel 3, dilation 4

l

1x1 Conv
Output

Figure 3.4: Architecture of the Temporal Convolutional Network (TCN) model.

21

As shown in Figure the architecture consists of three TemporalBlock modules,
each containing two 1D convolutional layers with ReLU activations, dropout, and causal
padding removal via a Chomp1d operation. Residual connections facilitate gradient flow
through the deep stack of blocks, while a 1 X 1 convolution is used for channel matching
when required. The blocks employ dilation factors of 1, 2, and 4, each with 32 channels
and a kernel size of 3. A final 1 X 1 convolution projects the output back to a single

channel.

Training followed the same sliding-window batching approach used for the WaveNet,
with sample-wise mean squared error (MSE) as the loss function. Empirically, the TCN
converged faster than both LSTMs and WaveNet, and achieved lower loss on reverb tasks

with long impulse responses (see Table 3.4).

Table 3.4: Performance of TCN vs. WaveNet and LSTM on long-memory reverb effects.

Effect Type Model MSE Loss ESR

Dragonfly Plate Reverb TCN 0.0115 1.607
Dragonfly Plate Reverb ~ Wavenet 0.0178 11.745
Dragonfly Plate Reverb LSTM 0.0143 14.01
Dragonfly Room Reverb =~ TCN 0.0452 1.077
Dragonfly Room Reverb Wavenet 0.0933 26.32
Dragonfly Room Reverb ~ LSTM 0.0941 33.18

3.5 Structured State Space Models (Mamba)

Structured State Space Sequence models [14], provide a flexible framework for general
sequence modeling and have been shown to surpass traditional recurrent, convolutional,
and Transformer-based architectures across a range of tasks. Each S4 layer can be inter-
preted as a differentiable realization of an infinite impulse response (IIR) system in state-
space form, allowing it to maintain information over theoretically unlimited time hori-
zons, much like recurrent networks. This property makes S4 particularly well-suited for
modeling non-linear, time-dependent audio effects, such as those found in analog gui-
tar pedals [15, 11, 16]. NablaFx [[17] offers open source implementation of S4 for audio

effects modeling tasks]

Mambea [18]] is a recent implementation of SSMs designed for efficiency and ease of

Shttps://github.com/mcomunita/nablafx

22

https://github.com/mcomunita/nablafx

integration in audio and control tasks. It leverages the mathematical structure of SSMs
to reduce computation while preserving long-term memory, and it forms the backbone

for the S4 architecture.

Input
Batch x Sequence x Channels

ConvlD
16 filters, Kernel size 12

ConvlD
16 filters, Kernel size 12

l

MambaBlock

l

Fully Connected
Output

Figure 3.5: Architecture of the Conv-Mamba guitar effect model.

In my experiments, I implement a Conv-Mamba architecture. As illustrated in Fig-
ure the model consists of two 1D convolutional layers, each with kernel size 12 and
16 filters. The output features are passed through a single Mamba block, which ex-
pands the input dimension to 26, applies a placeholder state-space kernel, and projects
back to the hidden dimension. A fully connected layer then maps the output of the
last time step to two output channels. The model operates on input tensors of shape
[batch_size, sequence_length, 2] and produces output tensors of shape [batch_size, 2],

similar to my LSTM implementation.

Empirically, the Conv-Mamba model achieves lower mean squared error (MSE) than
both WaveNet and TCN on tasks involving long-memory effects, such as plate and room
reverb. Table[3.5summarizes the results, showing that the model is able to capture more

of the reverb tail and produce higher subjective audio quality.

23

Table 3.5: Performance of Conv-Mamba on long-memory reverb effects compared to TCN and
WaveNet.

Effect Type Model MSE Loss ESR
Dragonfly Plate Reverb ~ Conv-Mamba 0.0089 0.85
Dragonfly Plate Reverb TCN 0.0115 1.607
Dragonfly Plate Reverb Wavenet 0.0178 11.745
Dragonfly Room Reverb Conv-Mamba 0.0312 0.62
Dragonfly Room Reverb TCN 0.0452 1.077
Dragonfly Room Reverb Wavenet 0.0933 26.32

3.6 Transformers

Transformers, introduced in 2017 [19], revolutionized NLP by modeling global context
through self-attention, and have recently been implemented for a variety of audio pro-

cessing tasks [20, 21]].

While powerful, Transformers are computationally expensive and require large datasets
for effective training. Their lack of inductive bias for time locality makes them less effi-
cient for audio applications like guitar effects emulation. To my knowledge, they have

not yet been implemented to emulate guitar effects.

Nevertheless, their global receptive field and flexibility make them a potential option

for future work.

24

4 Gray-Box models

Gray-box models assume an existing digital signal processing chain and focus on tuning
its parameters to match the behavior of a target effect. This model-based parameter opti-
mization introduces a strong inductive bias, significantly reducing the space of possible
solutions. While less flexible than black-box models, gray-box approaches are more in-
terpretable, faster to train, and often sufficient for approximating a wide range of guitar

effects.
I present two methods:

« A model based on a Genetic Algorithm (GA) that searches for optimal combina-

tions of audio effects and parameters to match a reference signal.

« Adifferentiable DSP based model that learns interpretable parameters via standard

gradient optimization methods.

4.1 Genetic Algorithm-Based Effect Estimation

Genetic algorithm-based audio modeling has been explored in several studies [22, 23]].
Other non-differentiable optimization methods have been used for audio synthesis, such
as in [24]], where Gaussian Processes were employed for active learning of intuitive con-
trol knobs in synthesizers. However, to my knowledge, there have been no studies ap-
plying genetic algorithms specifically to guitar effect emulation. First we will go over a
brief explanation of what genetic algorithm is, and then focus on my implementation in

terms of guitar effect modeling.

25

4.1.1 Overview of Genetic Algorithms

Genetic Algorithms are optimization techniques inspired by biological evolution. A GA
operates on a population of candidate solutions, which evolve over successive genera-

tions through:
+ Selection: Favoring individuals with higher fitness (better solutions).
+ Crossover (Mating): Combining two parents to produce a new individual.
« Mutation: Introducing small random changes to maintain diversity.
« Elitism: Preserving a few top-performing individuals into the next generation.

In each generation, individuals are evaluated using a fitness function, and the best
solutions are carried forward while new candidates are generated through crossover and

mutation. This process continues until convergence or a stopping criterion is reached.

4.1.2 Effect Chain Encoding and Pedalboard Integration

We use the pedalboard library by Spotify to simulate common audio effects: Compressor,
Distortion, Chorus, Reverb, and Delay. Each individual in the GA population repre-
sents a fixed sequence of these effects, with tunable parameters as shown in Figure

All individuals have exactly 5 of these effects.
Each effect is encoded with:
« A dictionary of effect-specific parameters (e.g., threshold, ratio, damping).

« Adry/wet mix coefficient a € [0, 1], which balances unprocessed and processed
audio:

output = (1 — ar) - dry + a - wet

Including the dry/wet mix greatly improves flexibility, allowing the algorithm to use

subtle versions of effects.

26

dry-wet knob

dry-wet knob

COMPRESSOR | | DISTORTION CHORUS REVERB DELAY
threshold_db drive_db rate_hz room size delay_seconds
ratio dep{h dammeg feedback
attack_ms centre_delay_ms wet_level
release_ms feedback dry_level

width

freeze_mode

Figure 4.1: A signal chain containing effects and it’s parameters. Along effect-specific parame-
ters, each effect also contains a dry-wet mix parameter

4.1.3 Fitness Evaluation and Evolutionary Process

Each candidate effect chain is evaluated by comparing the audio it produces (by process-
ing dry input) to a given target audio. This is done chunk-by-chunk (typically 1-second
segments), and the loss is computed as the mean squared error. Fitness function is thus

inversely proportional to the loss function.
The population evolves according to the following steps:

1. Selection: Tournament selection is used to choose parents. A subset of individuals
compete from the old population (typically 4), and the best one is selected with
high probability. Once both parents are chosen via this process, they mate and the
offspring is added to the new population. The whole process repeats until the new

population is as long as the old one.

2. Crossover: Each child inherits one effect from either parent at each position in

the chain.

3. Mutation: Each effect has a chance to mutate. This may modify a parameter

slightly or adjust the dry/wet mix.

4. Elitism: Best performing individuals (by fitness) are preserved directly into the

27

next generation.

The genetic algorithm described in Algorithm (1| runs iteratively, logging the average
loss and exporting the best solution’s audio output after each generation for monitoring.
In my experiment, I've set the number of individuals in the population to N = 50, the
tournament size to T = 4, and the elitism rate to E = 0.02, and let the algorithm run for

30 generations.

Algorithm 1 Genetic Algorithm Implementation

1: Initialize population of N individuals with random effect chains

2: for each individual in population do

3. Evaluate fitness by processing dry audio and computing error to target audio
4: end for

5. while stopping criterion not met do

6: Sort population by fitness (lower error = higher fitness)

7. Preserve top E - N individuals as elites

8: Initialize new population with elites

9: while new population size < N do

10: Select two parents using tournament selection of size T

11: Produce child: for each effect, randomly select from one parent

12: Mutate child: for each effect, slightly perturb a parameter or dry/wet mix
13: Evaluate child fitness

14: Add child to new population

15: end while

16: Replace old population with new population

17: Output an effected wav file of the best individual
18: Output MSE of the best individual

19: end while

4.1.4 Results and Discussion

While this solution offers interpretability, it still fails to outperform even the basic black-
box model like LSTM, and convergence is very slow due to stochastic nature of genetic

algorithm. Why it fails to outperform black-box models lies in a fact that we introduced

28

a strong inductive bias and thus limited expressivity of a model. This model can’t learn
the task completely unless the targeted pedal is in fact a combination of effects used in

the algorithm.

4.2 Gradient-Based Optimization (DASP)

Building on the idea from the previous chapter - an effect chain designed to emulate
a target guitar pedal - we now replace the GA-based parameter search with standard
gradient-based optimization methods such as gradient descent. This change greatly ac-
celerates convergence, as the model no longer relies on purely stochastic exploration of

the parameter space.

While the spotify Pedalboard library used in previous chapter offers common audio
effects and allows to define signal chains, these are not differentiable. Differentiable
Audio Signal Processing (DASP provides a differentiable implementation of common

guitar effects inspired by [25] 26| 27, 28]].

Using DASP, I represented a sequence of effects - distortion, compression, and re-
verb, with each effect having differentiable parametrs. By minimizing a mean squared
error (MSE) between the chain’s output and a target audio signal, the chain learns inter-

pretable parameters that approximate the desired tone.

DASP learns faster than genetic algorithms because its differentiable blocks lead it
directly toward a solution, rather than stochastically wandering through the parameter
space like GA. Its parameter space is the same as the genetic model (not exactly the same,
but very similar, since the pedal implementations inside the effect chain are not identi-
cal), which means it s still limited in expressivity, but it is good enough for approximating

some pedals.

4.2.1 Limitations of Gray-Box Models

Both the GA-based approach and the DASP-based approach share a fundamental limita-
tion: they can only converge to target pedals that lie within the expressivity of the model,

i.e., the space spanned by the effects included in the chain. If a target pedal implements

"https://github.com/csteinmetz1/dasp-pytorch

29

https://github.com/csteinmetz1/dasp-pytorch

Table 4.1: Performance comparison of Gray-Box (GA, DASP) vs. Black-Box (WaveNet, LSTM)
models on pedal emulation.

Effect Type Model MSE Loss

Simple Distortion GA 0.0852
Simple Distortion =~ DASP 0.0714
Simple Distortion = LSTM 0.00043
Simple Distortion WaveNet 0.00028

Plate Reverb GA 0.123
Plate Reverb DASP 0.109
Plate Reverb LSTM 0.0143
Plate Reverb WaveNet 0.0112

a non-linear behavior, unique modulation, or interaction between parameters that can-
not be represented as a linear or differentiable combination of the available effects, then

both models will fail to fully replicate it.

It can be observed from Table 4.1 that both gray-box models perform worse than the

black-box models, due to their lack of expressivity.

Recent studies, such as [17], have suggested combining gray-box and black-box op-
timization to address this limitation. In such hybrid approaches, a differentiable chain
captures the bulk of the effect behavior, while a black-box neural network component
models the residual non-linearities or dynamics that the differentiable chain cannot rep-
resent. This allows the model to retain interpretability in the primary effect parameters
while gaining the expressivity needed to approximate more complex pedals. This hybrid

approach offers a promising direction for future research.

30

5 Additional experiments

5.1 Modeling knobs

In this thesis, the pedals I attempted to emulate had “locked-in” knob settings. Unlike
real pedals, where adjusting knobs in real time can create a wide variety of tones, the
pedals in this study were fixed. Modeling the control knobs was not the focus in my

research.

In many differentiable audio modeling frameworks, conditioning mechanisms such
as FiLM and TFiLM [17] are used to allow neural networks to dynamically adapt to
different knob settings. These layers modulate the network’s internal activations based
on external parameters (e.g., knob positions), enabling the model to produce a continu-
ous range of outputs corresponding to different pedal settings. Conditioning improves

interpretability and flexibility of a model.

For physical analog devices, capturing knob-dependent behavior requires synchro-
nizing control knob positions with recordings of both dry input and wet output audio.
Manually collecting such data is challenging, as exhaustively sampling the continuous
control space of an amplifier or effects pedal is time-consuming and prone to inconsis-
tency. Recent work [29] has addressed this issue through robotic automation. Robotic
systems can accurately and consistently adjust knobs while recording paired input-output

data.

5.2 Modeling LFO-based effects (Phaser, Flanger)

Modeling Low-Frequency Oscillator (LFO) modulated, time-varying audio effects such

as phasers and flangers may be feasable, but very time consuming using methods de-

31

scribed in this thesis.

Some works offer a clever gray-box neural network approach using (LSTM) [30]], the
network’s inputs include both the unprocessed audio signal and the corresponding LFO
signal. The explicit inclusion of the LFO signal as an input greatly improves both model

performance and interpretability.

5.3 Guitarless Dataset

As a final part of my thesis, I tried out training LSTM on a dataset with no guitar record-
ings. The idea is that guitar pedals although designed to change the guitar tone, can work
on any audio signal including human voice or drums. Guitar pedals don’t have idea to

which type of signal is fed into their input.

After some experiments, I found out LSTM was indeed able to emulate a distortion
guitar pedal successfully while trained on input-output pairs with no guitar recordings.
When trained exclusively on guitar recordings, the model reached an MSE of 4.3 x 10~*
and ESR of 14.01. When trained on non-guitar recordings, it still achieved almost iden-
tical performance, with an MSE of 4.7 x 10~* and ESR of 14.32. This confirms that the

LSTM generalizes well to guitar signals even when trained on unrelated audio.

32

6 Conclusion

While the goal of this work was to provide a general model that would be good at emulat-
ing all types of guitar pedals, no such model exists with current technologies. Although
some models work better on some types of effects, other models work better on other
types of effects. There are tradeoffs to be made when learning a new effect, and without
domain knowledge of which type of effect we are trying to emulate, it is very hard to

predict which model should we choose to generalize well on all types of effects.

Some complex effects might even be impossible to model with any of these methods,
as they either require too much data to even approximate them well, or can’t be learnt at

all because of modeling complexity.

33

References

[1]

2]

[5]

[6]

[7]

8]

T. Wilmering, D. Moffat, A. Milo, and M. Sandler, “A history of audio effects,”
Applied Sciences, vol. 10, p. 791, 01 2020. https://doi.org/10.3390/app10030791

S. Braun and I. Tashev, “A consolidated view of loss functions for supervised
deep learning-based speech enhancement,” 2020. [Online]. Available: https:
//arxiv.org/abs/2009.12286

R. Simionato and S. Fasciani, “Comparative study of state-based neural
networks for virtual analog audio effects modeling,” 2025. https://doi.org/https:
//doi.org/10.1186/s13636-025-00416-3

J. Byun, S. Shin, Y.-C. Park, J. Sung, and S.-W. Beack, “Development of a
psychoacoustic loss function for the deep neural network (dnn)-based speech

coder,” pp. 1694-1698, 2021. https://doi.org/10.21437/interspeech.2021-2151

R. M. Schmidt, “Recurrent neural networks (rnns): A gentle introduction and

overview,” 2019. [Online]. Available: https://arxiv.org/abs/1912.05911

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computa-

tion, vol. 9, pp. 1735-1780, 11 1997. https://doi.org/10.1162/neco0.1997.9.8.1735

A. Wright, E.-P. Damskédgg, L. Juvela, and V. Vilimiki, “Real-time guitar
amplifier emulation with deep learning,” Applied Sciences, vol. 10, no. 3, 2020.

https://doi.org/10.3390/app10030766

A. Wright, E.-P. Damskigg, and V. Vdlimiki, “Real-time black-box modelling with

recurrent neural networks,” 09 2019.

34

https://doi.org/10.3390/app10030791
https://arxiv.org/abs/2009.12286
https://arxiv.org/abs/2009.12286
https://doi.org/https://doi.org/10.1186/s13636-025-00416-3
https://doi.org/https://doi.org/10.1186/s13636-025-00416-3
https://doi.org/10.21437/interspeech.2021-2151
https://arxiv.org/abs/1912.05911
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/app10030766

[9]

[13]

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model

for raw audio,” 2016. [Online]. Available: https://arxiv.org/abs/1609.03499

C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional
networks for action segmentation and detection,” 2016. [Online]. Available:

https://arxiv.org/abs/1611.05267

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling,” arXiv preprint arXiv:1803.01271,

2018.

C. J. Steinmetz and J. D. Reiss, “Efficient neural networks for real-time
modeling of analog dynamic range compression,” 2022. [Online]. Available:

https://arxiv.org/abs/2102.06200

Y.-T. Yeh, W.-Y. Hsiao, and Y.-H. Yang, “Hyper recurrent neural network:
Condition mechanisms for black-box audio effect modeling,” 2024. [Online].

Available: https://arxiv.org/abs/2408.04829

A. Gu, K. Goel, and C. R¢, “Efficiently modeling long sequences with structured
state spaces,” 2022. [Online]. Available: https://arxiv.org/abs/2111.00396

H. Yin, G. Cheng, C. J. Steinmetz, R. Yuan, R. M. Stern, and R. B. Dannenberg,
“Modeling analog dynamic range compressors using deep learning and state-space

models,” 2024. [Online]. Available: https://arxiv.org/abs/2403.16331

R. Simionato and S. Fasciani, “Modeling time-variant responses of optical
compressors with selective state space models,” 2025. [Online]. Available:

https://arxiv.org/abs/2408.12549

M. Comunita, C. J. Steinmetz, and J. D. Reiss, “Nablafx: A framework for
differentiable black-box and gray-box modeling of audio effects,” 2025. [Online].
Available: https://arxiv.org/abs/2502.11668

A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state

spaces,” 2024. [Online]. Available: https://arxiv.org/abs/2312.00752

35

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1611.05267
https://arxiv.org/abs/2102.06200
https://arxiv.org/abs/2408.04829
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2403.16331
https://arxiv.org/abs/2408.12549
https://arxiv.org/abs/2502.11668
https://arxiv.org/abs/2312.00752

[19]

[20]

[21]

[23]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023. [Online]. Available:
https://arxiv.org/abs/1706.03762

P. Verma and C. Chafe, “A generative model for raw audio using transformer

architectures,” 2021. [Online]. Available: https://arxiv.org/abs/2106.16036

W.-T. Lu, J.-C. Wang, M. Won, K. Choi, and X. Song, “Spectnt: a time-
frequency transformer for music audio,” 2021. [Online]. Available: |https:

//arxiv.org/abs/2110.09127

H. A. Zubi, “Gascar: Genetically automated synthesizer configuration
for audio replication,” 2022. [Online]. Available: |https://www.cs.ru.nl/
bachelors-theses/2022/Hamzah_Al_Zubi___1047768___ GASCAR_-_Genetically_

Automated_Synthesizer_Configuration_for_Audio_Replication.pdf

A. Johnson, “Sound resynthesis with a genetic algorithm,” Imperial College
London, Final Year Project, 2011. [Online]. Available: https://www.doc.ic.ac.uk/
teaching/distinguished-projects/2011/a.johnson.pdf

C. E. Perez, S. Dixon, and D. Stowell, “Active learning of intuitive control knobs for
synthesizers using gaussian processes,” in Proceedings of the International Confer-

ence on New Interfaces for Musical Expression (NIME), 2019, pp. 123-128.

C. I. Steinmetz, N. J. Bryan, and J. D. Reiss, “Style transfer of audio effects with
differentiable signal processing,” arXiv preprint arXiv:2207.08759, 2022.

C. J. Steinmetz, V. K. Ithapu, and P. Calamia, “Filtered noise shaping for time
domain room impulse response estimation from reverberant speech,” in WASPAA.

IEEE, 2021.

S. Nercessian, “Neural parametric equalizer matching using differentiable bi-

quads,” in DAFx, 2020.

J. T. Colonel, C. J. Steinmetz, M. Michelen, and J. D. Reiss, “Direct design of biquad
filter cascades with deep learning by sampling random polynomials,” in ICASSP.

IEEE, 2022.

36

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2106.16036
https://arxiv.org/abs/2110.09127
https://arxiv.org/abs/2110.09127
https://www.cs.ru.nl/bachelors-theses/2022/Hamzah_Al_Zubi___1047768___GASCAR_-_Genetically_Automated_Synthesizer_Configuration_for_Audio_Replication.pdf
https://www.cs.ru.nl/bachelors-theses/2022/Hamzah_Al_Zubi___1047768___GASCAR_-_Genetically_Automated_Synthesizer_Configuration_for_Audio_Replication.pdf
https://www.cs.ru.nl/bachelors-theses/2022/Hamzah_Al_Zubi___1047768___GASCAR_-_Genetically_Automated_Synthesizer_Configuration_for_Audio_Replication.pdf
https://www.doc.ic.ac.uk/teaching/distinguished-projects/2011/a.johnson.pdf
https://www.doc.ic.ac.uk/teaching/distinguished-projects/2011/a.johnson.pdf

[29] L. Juvela, E.-P. Damskigg, A. Peussa, J. Médkinen, T. Sherson, S. I. Mimilakis,
and A. Gotsopoulos, “End-to-end amp modeling: From data to controllable guitar

amplifier models,” 2024. [Online]. Available: https://arxiv.org/abs/2403.08559

[30] A. Wright and V. Viliméki, “Neural modeling of phaser and flanging effects,”
Journal of the Audio Engineering Society, vol. 69, pp. 517-529, 07 2021.
https://doi.org/10.17743/jaes.2021.0029

37

https://arxiv.org/abs/2403.08559
https://doi.org/10.17743/jaes.2021.0029

Abstract

Emulation of Guitar Effects Using Machine Learning

Luka Ivankovi¢

This thesis investigates machine learning approaches for modeling and emulating
guitar effects pedals. We explore black-box and gray-box methods to capture the non-
linear, dynamic, and time-dependent behavior of effects such as distortion and reverb.
Black-box models, including LSTMs and WaveNet, learn end-to-end mappings from in-
put to output without assuming nothing about the internal structure of guitar effects,
while gray-box methods leverage partial knowledge of the effects structure combined
with optimization techniques like genetic algorithm and gradient descent. Models are
evaluated on guitar and non-guitar audio, demonstrating that machine learning can ef-

fectively emulate guitar pedals.

Keywords: Guitar Pedals, Machine Learning, Black-box optimization, Gray-box opti-

mization

38

Sazetak

Emulacija gitarskih efekata primjenom strojnog ucenja

Luka Ivankovi¢

Ovaj rad istraZzuje pristupe strojnog ucenja za modeliranje i emulaciju efekata gitar-
skih pedala. IstraZujemo black-box i gray-box metode kako bismo uhvatili nelinearno,
dinami¢no i vremenski ovisno ponaSanje efekata poput distorzije i reverba. Black-box
modeli, uklju¢uju¢i LSTM i WaveNet, uce preslikavanje pedale koju pokusavamo emu-
lirati bez pretpostavki o unutarnjoj strukturi gitarskih efekata, dok gray-box metode ko-
riste djelomi¢no znanje o strukturi efekta kombinirano s tehnikama optimizacije poput
genetskih algoritama i gradijentnog spusta. Modeli se evaluiraju na gitarskom i negi-
tarskom zvuku, pokazujuci da strojno u¢enje moZze ucinkovito reproducirati ponaSanje

pedale.

Klju¢ne rijeci: Gitarske pedale, Strojno Ucenje, Crna-kutija, Siva-kutija

39

Appendix A: The Code

As part of this research, I provide the original codebase that was used to create and an-
alyze the dataset, train and evaluate the models, and measure the impulse responses of

the audio effects. The structure of the code is organized as follows:

Core Files

« Response.py — Responsible for loading VST3 plugins, creating the dataset, and

measuring the impulse response lengths of the effects.

« dataset.ipynb — A Jupyter notebook used for dataset analysis and exploratory

evaluation.

« Main.py — The main script used to train the black-box models.

Model Implementations

+ models/ — Contains all black-box architectures used in this research.

« grey_box_models/ — Contains grey-box models, including DASP-based and ge-

netic approaches.
Utilities

+ helper/ — Contains various loss functions used in the experiments, helper utilities

for saving and processing audio (. wav) files, and training/evaluation loops.

+ datasets/ — Includes the dataset handling code, such as chunking audio for train-

ing, as well as the custom FrequencyQueueDataset class for efficient data loading.

40

Excluded Folders

Due to their size, the data/ and plugins/ folders are not included in this repository.
Their structure is as follows:

Data Folder

The dataset is split into three subfolders: train, valid, and test. Each subset is further

divided into:

« x/ — Contains unprocessed audio files, organized into guitar/ and other/ sub-

folders.

« y/ — Contains processed audio files, also organized into guitar/ and other/ sub-

folders. Each of these is further divided by effect type:

dragonflyPlateReverb

dragonflyRoomReverb

ragingDemon

simpleDist

Plugins Folder

This folder contains the original VST3 plugins used to generate the dataset.

41

	Introduction
	Dataset
	Dataset Source
	Effects
	Distortion
	Reverb
	Other effects
	Applying the effects

	Chunking and Smart Loading
	Loss Function Selection
	Empirical Findings

	Black-Box models
	Fully Connected Networks
	Recurrent Networks (LSTM)
	WaveNet
	Temporal Convolutional Network (TCN)
	Structured State Space Models (Mamba)
	Transformers

	Gray-Box models
	Genetic Algorithm-Based Effect Estimation
	Overview of Genetic Algorithms
	Effect Chain Encoding and Pedalboard Integration
	Fitness Evaluation and Evolutionary Process
	Results and Discussion

	Gradient-Based Optimization (DASP)
	Limitations of Gray-Box Models

	Additional experiments
	Modeling knobs
	Modeling LFO-based effects (Phaser, Flanger)
	Guitarless Dataset

	Conclusion
	References
	Abstract
	Sažetak
	The Code

